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Learning to control a complex multistable system
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In this paper the control of a periodically kicked mechanical rotor without gravity in the presence of noise
is investigated. In recent work it was demonstrated that this system possesses many competing attracting states
and thus shows the characteristics of a complex multistable system. We demonstrate that it is possible to
stabilize the system at a desired attracting state even in the presence of high noise level. The control method is
based on a recently developed algoritfn Gadaleta and G. Dangelmayr, Ch8pg75(1999] for the control
of chaotic systems and applies reinforcement learning to find a global optimal control policy directing the
system from any initial state towards the desired state in a minimum number of iterations. Being data-based,
the method does not require any information about governing dynamical equations.
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[. INTRODUCTION rapidly access these ordered states. The control of such sys-
tems, in particular under noisy conditions, would then offer
The long-term behavior of nonlinear dynamical systems ighe opportunity to utilize this multistable behavior for the
generally classified as either stationary, periodic, quasiperiprocessing and storage of information, i.e., different ordered
odic, or chaotic. These types of behaviors and their controstates are identified with different “memorized” pieces of
are well studied and understood if the available states armformation. External input can be thought of as triggering a
well separated and their dimensions rather low. In recentertain control mechanism that stabilizes a selected ordered
years the attention has shifted to systems exhibiting moretate that would be associated with the given input.
complex behaviors such as many coexisting attracting states. The simplest prototype of a complex multistable system is
In general the term “complexity” has been coined to denoteprovided by the model equations of a periodically kicked
systems that have both elements of order and elements aiechanical rotof10,11,4 whose quantum mechanical coun-
randomnes§l]. Such systems typically, but not necessarily, terpart plays an important role in the study of quantum chaos
have many degrees of freedom, are composed of many comit2]. Until now, control was achieved for low noise levels
plicated inter-related parts, and possess competing attractingrough a simple feedback mechanigii] that perturbs di-
sets. Minor perturbations induced, for example, by noise, carectly all system variables and requires computation of the
cause the system to undergo random transitions between didacobian of the map close to the desired state. Moreover, this
ferent attracting states. Furthermore, due to the nontriviatontrol technigue is only local, i.e. the control is usually
relationship between the coexisting states and their basins &fvitched on only if the system is close to the desired state. In
attraction, a final state depends crucially on the initial condi{11] the Jacobian was computed from the model equations.
tions[2]. This behavior is callednultistability and was first  In many real-world applications, this information will not be
studied experimentally ifi3] and since then was observed in available and specifically in the context of neural informa-
a variety of systems from different areas such as physiction processing it is unrealistic to base control methods on
[4-6], chemistry{ 7], and neurosciend®]. Adding noise to a  the basis of analytical knowledge of governing system equa-
multistable system will generate complex behavior and intions. In some cases, the Jacobian can be estimated from
duce competition between the attractiveness towards regulabserved data as suggestedis]. In the presence of noise,
motion in the neighborhood of an attracting state and théiowever, this estimation can become very difficult.
jumping between basins of attractions induced by nfitde Learning algorithms that do not require any analytical
The dynamics is then characterized by a large number dtnowledge can be based on reinforcement learning and in
periodic attractors “embedded” in a sea of transient chaosecent works[14,15 reinforcement learning was shown to
[1]. The time the system spends in an attracting state corrgslay an important role in neural information processing. It is
sponds to its “ordered” phase, and the transient time to itsherefore interesting to investigate the control of complex
“random” phase. Added noise can prevent the system fronsystems through reinforcement learning.
settling down into an ordered phase. Related to the control of complex systems is the control of
Besides their importance for specific applications, a furchaos. The use of reinforcement learning to control chaotic
ther motivation to study the dynamics and control of suchsystems was first suggested by Der and Herrnjfd®hwho
complex systems is their possible role as information proapplied it to the logistic map. 1117] we generalized the
cessing devices in neural information procesdi®y Com-  method and applied it to the control of several discrete and
plex systems are characterized by a very large number afontinuous low-dimensional chaotic and hyperchaotic sys-
coexisting states and, with adequate noise, the system casms and recently to coupled logistic map latti¢&8]. Lin
and Jou[19] proposed a reinforcement learning neural net-
work for the control of chaos and applied it to the logistic
*Email address: sabino@math.colostate.edu and the Haon map. To control chaotic systems, unstable
TEmail address: gerhard@math.colostate.edu states embedded in the chaotic attractor are stabilized. To
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control multistable systems, the desired state is typically cho- 01— 20+ 0n_1+C(0,—0,_1)=Fgsing,, (2.9
sen to be one of the many existing attracting states. These

states aranetastableg(stable only for a finite timeabove a  wherefg=cf;/d. By introducing the new variablg,= 6,
certain noise level and the control must stabilize dynamics-6,_,, we obtain from Eq(2.8) the dissipative standard

against noise. map
Although the characteristics of the stabilized state in a
chaotic system differ from the desired state in a multistable Yn+1=(1=cC)y,+fosing,,
system, we will show in this paper for the case of a periodi- (2.9
cally kicked rotor that the method developed i7] for cha- On+1= OntYne1 (Mod 27),

otic systems is also well suited for the control of complex = | ) , )
multistable systems in the presence of significant noise leyhich is related to the system just before successive kicks.
els. Instead of perturbing the system state directly, we app@,ntroducmg the variable ,=y,, , we can rewrite this map in
parametric control. he form

0hi1=0,+v, (Mod 2m),

II. BASIC EQUATIONS (2.10

The differential equation describing the temporal evolu- Un+1=(1=C)vnt+fosin(On, 1),
tion of the phase anglé of a forced damped pendulum with

forcing f(t) and dampingd is given by which describes the state of the system just after two succes-

sive kicks. The mapg2.10 was extensively studied ifL0].
0" +deo’ =f(t)siné. (2.2 Forc=0 it results in theChirikov standard maj20]. In this
undamped, Hamiltonian limit the state space consists of a
If the external force acts periodically and impulsively on thechaotic sea interspersed with regular motion represented by
rotor, stability islands of stable periodic orbits. The largest regions
of regular motion are made up by the islands of the primary
_ _ periodic orbits. These are the fixed poingseriod 1, 6
T fl% o(t=n, 22 =m,v=2mm, m=0,=1,...) andhigher period periodic
orbits that are present fdi,=0. Further, secondary stable
the dynamics is most conveniently described by its returrperiodic orbits occur forf,#0. Their islands are grouped
map. Leté(t) be the solution at timé and letd,= 6(n) be  around the primary islands and are in general much smaller,
its value at thenth kick. Due to thes-forcing the velocity inducing a hierarchical organization of the stable periodic
¢’ (t) shows a discontinuity at=n, orbits[10,21]. We note that in the undamped case the range
of the velocity v can also be identified with a circle
(v mod 27), i.e. the infinitely extended cylindrical phase
space is compactified to a torus. On the torus the infinite
family of primary fixed points is represented by a single
point, but the number of all periodic orbits is still assumed to
I be infinite[21].
6(t)=60,— a(e*d“*”)—l), ns<t<sn+1, On the other hand, for very strong damping~1) one
obtains the one-dimensionalrcle map with a zero phase
(2.4 shift,

0'(n+0)—0#'(n—0)="f;sind,, (2.3

whereasd(t) is continuous. The solution between two suc-
cessive kicks is then given by

l,:=60"(n—0)+f;sing,.

It fO||0WS Un+1:Un+fosinUn, (21])
| which exhibits the usual Feigenbaum scenario for the transi-
1= 0n— a”(e—d— 1) (2.5 tion to chaos. In particular, this map possesses only one at-
tractor in large regions of the phase spf2#].
When a small amount of dissipation €@<1) is added
to the undamped system, stable periodic orbits turn into sinks
l,=1,_,e 9+f,sing,. (2.69  or disappear. The parameter dependence of the sinks and
their basins of attraction have been studied numerically by
For simplicity we sec=1—e" ¢ (0<c=<1). Equation2.5)  Feudelet al. [10]. We shortly summarize some of the main
with n replaced byn—1 yieldsu,,_,=(d/c)(6,— 6,—,) and  results of this study. Foc#0 the range o> can no longer
from Eq.(2.6) we obtain be identified with a circle. The phase space is now an infi-
nitely extended cylinder on which we find an infinite number
of stable periodic orbits in the limit— O, in particular the
primary family of fixed points, denoted by,. Forc>0 all
trajectories are eventually trapped in the finite cylinfter
which, when substituted back into E@.5), leads to a “fi-  <f,/c that contains all attractors. The number of sinks is
nite difference form” for the phase angt,, now finite, but can be made arbitrarily large by choosing

and

d
=2 (1=C)(y— 1)+ F1 sind, (2.7)
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sufficiently small. Specifically, only a finite number of the
formerly infinite P, family can be present. These fixed
points still havev =27m but the phases are now different n
and the size of the attraction basins quickly decreases with
increasing|m|. The main fixed pointP9 (m=0), has the
largest basin. In addition, whef is varied one finds births

of sinks in saddle node bifurcations and their disappearance

in period-doubling sequences, but the resulting chaotic pa-
rameter regimes are extremely small.

Concerning basin boundaries, these appear all to be frac-,,
talized giving rise to chaotic transients along chaotic saddles " ; ; : : ;
and hence to uncertainty in initial conditions. The question  _sg|{~ .. [2 | U A S
as to which extent the basins are riddled has only partly been i
addressed if110]. The basins of thé®; family contain full
(though small in size for largem) neighborhoods of the
fixed points and, therefore, cannot be fully riddled, but par- FIG. 1. Dynamics of the noisy kicked rotor fd,=3.5, c
tial riddling as defined ih22] is not excluded. The basins of =0.02, and§=0.09.
other periodic orbits are smaller and full riddling might occur ) o ) ] )
in some cases, but this requires further investigation. In sum(0-05< 6<0.1) attracting periodic orbits still could be iden-
mary, the kicked rotor with small dissipation serves as anified. However, when an attracted region around such an
example of a multistable system characterized by a complierbit is reached, the noise will eventually drive the system to
cated coexistence of many periodic sinks with sensitive dethe basin boundary where it then follows for a while a cha-
pendence on initial conditions. otic saddle until it reaches a neighborhood of another attrac-

The complexity of multistable systems can further be en+tor. The resulting dynamics is characterized by almost peri-
hanced through the introduction of noise, which leads to unedic motion interrupted by bursts, and the smaller the noise
predictable transitions between different attracting states reis the larger are the regular phases. This behavior is referred
vealed by almost periodic motion interspersed by randomo as attractor hopping and may also be considered as noise-
bursts[2]. In addition Krautet al.[2] observed a decrease in induced chaos. In a sense, sinks of the noiseless system turn
the number of accessible states. Their results indicate that theto saddles of a “noise-induced chaotic attractor.” Control-
noise induces a preference of certain attractors. ling a periodic orbit in this regime resembles the control of

In the following sections we show that the multistable an unstable periodic orbit embedded in a chaotic attractor of
rotor can be stabilized at a desired attracting state through @ deterministic system. However, while in the deterministic
control method based on reinforcement learning. We showase unstable directions have to be avoided by forcing the
that control can be achieved up to noise levels as high as system to remain on the stable manifold, in the noisy case
=0.4[see Eq(3.1) below]. As control parameter we choose random pushes towards the basin boundary have to be sup-
the forcingfy. The allowed control actions consist of small pressed. It is therefore questionable whether Ott-Grebogi-

20

0

1 2 3 4 1 2 3 4xio*

discrete perturbations df,. Yorke—type method$13] work in the noisy case because
stable and unstable manifolds can hardly be identified.
ll. THE NOISY UNCONTROLLED ROTOR Which of the periodic orbits of the noiseless system are

] ) observed when noise is present depends on the sizes of their
The system investigated by Kraet al.[2] has the form  pasing and the noise level. For example, &+0.09, we
observe hopping between fixed points of the primary family
P, but no period 3 orbits could be identified, see Fig. 1.
(3D When the noise level is reduced, period 3 orbits occur in
addition to the primary fixed points. In Fig. 2 we show the

. bability density p(v,6) in the rectangle[ — 7,77

where 6, and 6, are the components of the uniformly and pro - B .

independently distributed noise vector with bounded norm:x[ol'zﬂ. Lor (a)8c°’3‘(—8(()).02_:ng(b)d5—(_).09. Coverlng_ thﬁ rect-

J&2+ 82<6. Throughout this section we set the unperturbedang e with an 8 grid the density was numerically gen-

forging ‘o f.=3.5 and the damping to—0.02. For these erated by iterating 1000 initial conditions for 1000 iterations
0_ . - . .

| K L 121 found ically 111 and counting the visits to each grid cell. In Figia2we
T e sone o b I oo ot 2 s small peakscoresponing o period s s hat
) : ) surround the large peaks corresponding to the primary fixed
orbits belong to thé?; family (6= 6,,,v =2mm) and some ge p b 9 b y

. N ints. In Fig. 2b) th I ks h di d and th
of them have period 3. Only 0.01% of all found orbits havepOIn s. In Fig. 2b) the small peaks have disappeared and the

. ) large peaks are broadened, suggesting that the attraction ba-
periods other than 1 and 3, so these orbits do not play a| ge peaxs Hggesiing I

5 f th iod 3 orbit bsorbed in the basi
important role. With noise added, Kraat al. [2] observed blcl;]jngariei gftr;]% prin?;r;/s%iferg Sgivr;/tsa.l sorbed in the basin

three different.types of behavior. For' small noise Igvél ( For increasing noise leved the jumps become more and
<0.05) thetrajectory may be trapped in the open neighbor-, .6 frequent up to a point where the system does not re-

hood of an attractor forever. For intermediate noise levemain in a stable state for more than a few iterations. Kraut

0ni1=0,+v,t+ 68, (Mmod 2m),

Un+1= (1=Clun+Tosin(by.q)+6,,
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FIG. 2. Probability density
p(v,6) in the rectangle
[=77,77]%x[0,27] for (@ &
=0.02 and(b) 6=0.09.

(b)

et al. [2] refer to this type of behavior as predominance of In terms of optimal control theor§23], the task is to find
diffusion due to noise, the system behaves now truly stochasn optimal control policy7=* (x,u) associating to every state
tically. The transition from hopping to diffusion is marked x a controlu such that the control goal is achieved in an
by a sharp increase of the exponent of the autocorrelatiooptimal way. Concerning the control of the rotor, an optimal
function of a noisy trajectory that occurs in a range aboupolicy should allow the stabilization of a prescribed state and
5=0.1[2]. In the diffusion-dominated regime the fine struc- in addition allow to reach its neighborhood in a minimum
ture of the basins is blurred by noise, but some of this strucaumber of iterations from any initial condition.
ture is still present preventing the motion from being a pure If analytical knowledge on system dynamics is available,
(6-correlated random process. A typical time series in the methods from optimal control theory such as dynamic pro-
diffusive regime is shown in Fig.(d) for 6=0.3. Figure 8b) gramming[24] or Lagrangian relaxatiof25] can be used to
shows the corresponding phase plot. establish an optimal control policy. Here we do not assume
In the following, we will use the notatiox,=(6,,v,) that such analytical knowledge is available. Then reinforce-
e X=T!X R to denote the state of the rotor at théh itera- ment learning 26], also known as neurodynamic program-
tion. We will attempt to control the systeif8.1) through  ming [27], which has been shown to find good solutions to

small discrete perturbations, of f, optimal control problem$27], can be applied. Even if ana-
lytical knowledge on system dynamics is available, rein-
fo="fotu,. (3.2 forcement learning is often applied instead of analytical tech-

niques since it is easier to implement and computationally

often more efficienf27].
IV. THE CONTROL ALGORITHM

In this section, we describe the control algorithm used to A. Reinforcement learning
stabilize the noisy rotor at a prescribed state. As mentioned Reijnforcement learning methods offer a solution to the
in the last section, we control the rotor through small discretgyroplem of learning from interaction of a decision maker,
state-dependent perturbatioms) of the applied forcingo.  called agent, with a controlled environment to achieve a

The dynamics of the controlled system can then be written ifyoa). At each discrete time step=1,2, ... theagent re-
the form ceives a representation,, e W of the environment's state
X, € X, whereW is the (finite) set of all possible state repre-
Ons1=0ntvn+ 8y (Mod 2m), sentations. On the basis wf,, the agent selects a contralr
(4.1)  action u,e U, the set of all available actions. The control is
Unt1=(1=c)vy+(fotup)sin(d,+v,)+3,, selected according to a policy, which is described by a

probability distribution 7,(w,u) of choosingu,=u if w,
whereu,=u(x,) represents the state-dependent control per=w. One time step later, as a consequence of the camjrol
turbation applied to the external forcirfg at thenth itera-  the agent receives a numerical reward; and a new state
tion step. Wy, 1. The goal is to maximize the accumulated rewards.

mllhu .ALJ,.LLLHM.ulmdxltﬂ)“i“h“ L J.JM‘

2000 4000 6000 8000 10000

FIG. 3. (a) Dynamics of the
noisy kicked rotor for6=0.3. (b)
Corresponding phase plane repre-
sentation of the dynamics.

2000 4000 6000 8000 10000 1 2 38 4 5 6

(a) " (b) ’
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FIG. 6. On-line control of the rotor dynamics with=0.09 and
FIG. 4. The seW of 100 reference vectons and their corre-  U={0,0.2-0.2. Initially the control goal isx,. After 30000

sponding Voronoi cells obtained through a neural-gas vector quariterations the control goal is switched xg,, and after 60 000 itera-
tization of 10 000 data points of the uncontrolled dynamics With  tions tox,,, .
=0.3.

transition from statev to w’ using controlu. The model is
Reinforcement learning methods offer ways of improving theMarkovian if the state transitions depend only on the current
policy through observations of delayed rewards to find arstate and control.
optimal policy that associates with each state an optimal con- In general one seeks to maximize the expectation value of

trol such that rewards are maximized over time.

the discounted return

Problems with delayed reinforcements are well modeled
as finite Markov decision process@dDPs). A finite MDP
consists of a finite set of statese W and controlsue U, a

©

Fn:kZO 'ykrn+k+1, O=y<1l. (4.2
reward functionR(w,u) specifying the expected instanta-

neous reward of the current state and action, and a statdost reinforcement learning algorithms are based on esti-
transition functionPY(w’,w) denoting the probability of a mating the state-action value function

Q7(W,u) =E {I n|w,=w,u,=u}, 4.3

Initialize Q(w,u) =0 V(w,u)
Initialize x randomly (on-line)
€=1 (off-line), €=0 (on-line)
REPEAT

Initialize x randomly (off-line)

Find w = w(x)

REPEAT (per episode)
Decrease epsilon (off-line)
u€Q(w,)

Apply v and observe x’
Find w' = w(x')
Determine reward:
1 if goal achieved

-0.5 otherwise

AQ(w,u) = 8[r +

x—x; we—w
UNTIL r =1
UNTIL control terminated

ymaxy Q(W,u') — Q(w,u)]

which gives the value of a state-action pair under a certain
policy. An optimal state-action value functid®* (w,u) is
defined for given {,u) as the maximum over the set of all
policies 7,

Q* (w,u)=maxQ™(w,u). (4.9

ks

Given an optimal state-action value functid@* (w,u),
choosing in any states the actionu* with associated maxi-
mal valueQ*,

u* (w)=arg maxQ* (w,u), (4.5

ueU

leads to an optimal control strategy. Here arg pndenotes
the value ofu at which the expression that follows is maxi-
mized.

One can show?28] that Q* satisfies the Bellman fixed
point equation

Q* (w,u)=R(w,u)+y E PY(w’,w)maxQ*(w’,u’).
w' eW u’

(4.6)

With available analytical knowledge on system dynamics,

FIG. 5. Summary of the proposed rotor control algorithm based.€., R and P are known, the solutiorQ* can be found

on Q learning. Both the on-line and off-line versions are shown.

through dynamic programminf23,26. For unknownR,P
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TABLE I. Comparison of on-linéQ) and off-line (Q*) controlled systems with the uncontrolled system.
See text for details.

Pr(u) Pr(Q) P+(Q*)
Goal Ny (%) A No (%) NG Ao (%) N
0 524 27 7441 590 46 5671 398 98 590
2m 582 22 7928 557 48 5467 417 99 512
A 1700 10 9170 516 56 4688 579 98 767

temporal-difference learninfR9] offers a way to estimate when starting from a random initial conditiditerations per
Q*. In temporal-difference learningQ* is found through a episodé. The goal will be to stabilize a prescribed state.
stochastic Robbins Monro approximatip80] according to

an update rule of the forfil7] B. Representation of state space

Qn+1=Qn+AQ,, 4.7

where the updateAQ, is based on observations of the
present statew,,u,) and the next statew(,;,Up:+1). A
particular choice ofAQ, is given by Watkin’'sQ learning

The reinforcement learning algorithm presented in the last
subsection requires a finite state representatiand a finite
action spacdJ. The complexity of the reinforcement learn-
ing problem increases exponentially with the sizeAdfind
U, and it is desirable to keep the siZ#%|,|U| of the setsW

[31] andU small.
' Concerning the action space, we choose a minimal pos-
AQ(Wy,Up) =B Fs 1+ y MaxQ(W, . 1,u) — Q(W,,u.)], sible set of action®) ={0,Unnax, — Umaxt acting on the exter-
ueu nal forcing: fo—fo+u,,u,eU. Upay Will be small com-

(4.8  pared tof,. In other words, the actions are restricted to either
force the system slightly stronger, slightly less, or with an
wherer . ; represents an immediate reward received for perunchanged forcing.
forming the controlu, in statew, . In this work we punish The setW represents a finite approximation to the true
unsuccessful actions by setting, ;= —0.5 whenever at the state spacX and we will construcW through a vector quan-
(n+1)th iteration the goal was not achieved and otherwisdization technique. The outcome of the vector quantization is
we setr,,. =1. a setW of reference vectorsre W, which partitionsX into
Q learning can be proven to converge towa@fs, if the  so-called Voronoi cells whose centawsform the necessary
whole state space is explored g8glis slowly frozen to zero discrete-state approximation. Each stateX is projected to
[32]. In real applications, due to time constraints, it will exactly onew(x) e W, wherew(x) is the closest reference
rarely be possible to satisfy this requirement and one oftenector according to somgsually Euclideannorm
uses a fixed3, B,= B [26]. Then the estimated policy will )
not be the globally optimal one but an approximation to it. w(x)=arg min/[x—w]|. (4.10
To ensure exploration of the whole state space, control ac- wew
tions are chosen from the correspond@galues according  Tq every reduced state, we associate an allowed set of
to a speufled policy that |n|t|ally choose; actions _StOChafSt"c:ontrolsU(w). In this work the setJ is fixed for allw. To
cally and is slowly frozen into a deterministic pqllpy. This gach possible pair of reduced stateand allowed control
can, for example, be achieved througlyreedy policiesr, signalue U, we associate a state-action valQéw,u) rep-

[26]. Here, an action that is different from the greedy actionggenting the value of performing contwlvhen the system
(the one with maximal estimated action valiechosen with is in statex, such thatv=w(x). Whenever the system is in

probability e, wheree is initially one and then slowly frozen statex, its corresponding reference vectofx) is identi-

to zero, 1.e., fied and a controli(x) is chosen from the s&i according to
1-etelU], u=u* the policy defingd through the valu€gw(x),u). _ .

(W, U) = ' (4.9 Vector quantization methods have been used in applica-
o e/|U]|, u#u*. tions such as time series predictipd3] or chaos control

[16,17 to construct a finite state-space approximation. Spe-
In Eq. (4.9, |U| denotes the cardinality & andw(w,u) is cifically the neural-gas algorithf83] has been shown to be
the probability of choosing action in statew. We call a  well suited for the approximation of chaotic attractors since
policy greedy or deterministic if exclusively the best actionit is topology preserving34].
u* is chosen é=0). An optimal state-action value function ~ To approximate the state space of the noisy rotor we ap-
Q* associates with each statea controlu such that when plied the neural-gas algorithi83] with N=100 reference
control actions are performed according to a greedy policwectors to the set of data pointsobtained from simulations
from Q* the goal is achieved in an optimal way. In this work with §=0.3 shown in Fig. ). The centers resulting from
we will measure the optimality of a policy in terms of the the neural-gas quantization are shown in Fig. 4 together with
average number of iterations it takes to achieve the goal their Voronoi cells.
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c : 305
w 1 D 1
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Fo.5¢
% 500 10500 1500 2000
Episodes FIG. 9. Probability density p(v,d) in the rectangle

[=7a,77]X[0,27r] when using policyQ* 47 for 5=0.09.

FIG. 7. Off-line control of the rotor dynamics with=0.09 and ) . .
U={0,0.2-0.2. The curves labelecky=0, x,=2m, and X, of period 3 orbits, however, a finer set of six#|=200 was

=4 represent the total number of iteratioftse sum over the Necessary. We emphasize here that the discrete phase-space
iterations of the performed episodeturing the learning process for 'epresentation concerns only the control strategy. The dy-
control of the goak, . € is slowly frozen from initially one to zero. Na@mics itself evolves in the full continuous phase space. This
With increasing number of episodes and decreasjrmdecrease in 'S cgrta[nly consistent W'th the requirements Of. “?a' \_/vorld
the slope of the curve shows convergence of the control policyfappl'cat_Ions where a finite state repres:entatlon is inevitable.
During the last 500 episodaeswas set to zero. The limiting slope In_ th's’. paper we treat the CQnStI’UCtIOI’\ Wiand the ap-
(number below the curvess an estimate ol for the particular prOXImatlon of the control pO“(?y as _S(—:*parate steps_ n the
policy. algorithm and we choose the size \6fin advapce. This is
not necessary since both steps can be combined. Specifically
the combination of growing vector quantization methods
We are not certain whether the proposed algorithm can bge g.,[35,36)) with the approximation of the control policy
successfully applied to the control of attractors with fully can lead to minimal codebooks well suited for specific con-
riddled basins of attraction. The periodic orbits whose con4rol problems as initial results concerning chaos control sug-
trol will be demonstrated in the next section possess regiongest[37].
in phase spacén particular regions close to the attraciors ~ The complete algorithm for the approximation of a con-
that are dominated by points leading to the same attractingol policy, i.e., a seQ of state-action values, is presented in
state. In these regions the reduced representation can repieg. 5 for on-line and off-line control as described in the next
sent the true phase spakgeas long as the representation is section. Once a control policy is established, the system is
fine enough. We will see in the next section that the codeeontrolled by choosing the perturbationg(x) e U greedy
book of size|W|= 100 as shown in Fig. 4 leads to successfulwith respect to the associated state-action values
control of the fixed points of th®, family. For stabilization  Q(w(x), -).

é é;x104

FIG. 10. Visualization of the polic@jﬁ. The dark(light) gray
FIG. 8. Off-line control of the rotor dynamics with=0.09 over  areas correspond to regions where the contigE — 0.2 (u,
80 000 iterations. The control policy is reset every 20 000 iterations=0.2) is associated with a maximal state-action value. In the white
from initially Q;‘% to Qih, Qjo and back to the initial policygi%. areas no control will be applied.
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20 ] 20 o with all Q values set to zero, control perturbations, chosen
o . greedy from the current set @ values, are applied to the
10 % o 100 == forcing function and the control algorithm updates Qe
: St Z function from immediate rewards,,,, wherer,,;=—0.5
e S 0 o if [xg—xp|>1 andr, ;=1 otherwise.(Note that we can
easily generalize the algorithm to situations where the exact
(a) ° 5 (b) 0 5 location of the fixed point, i.exg, is unknown. Segl7] for

details) Eventually the controller will find a successful con-
trol strategy and keep the system stabilized in the desired
S state. Figure 6 shows on-line control of the noisy rotor with
> 10 ........................................ ] 10 R A ................. . -
- _ S 6=0.09. Initially the control goal was to stabilize the system
— : in the statex,. After 30 000(60 000 iterations,Q was reset
0 B Op ..o ol to zero and the control goal changed to the stabilization of
(c) 0 0 5 (d) 0 0 S X, (X4,). We see that the controller is able to stabilize the
rotor at the desired location after only a small number of
FIG. 11. Local performance of the po|i@:4 . Shown are the iterations in all three cases. In a similar fashion, we were
points obtained after 10 iterations+0.09) with 1000 initial con- ~ able to stabilize all fixed pointsd,g) with g=*2mm for
ditions (#,v) randomly chosen from a small rectangbes shown mup to 4.

L

around(a),(b) x4, and(c),(d) Xo. (a),(c) shows uncontrolled dynam- In Table | we summarize the performance of the approxi-
ics and(b),(d) shows dynamics controlled according to the policy mated policies for stabilizing the different goalg. A was
Q;*AW. averaged over 2000 terminating episodes. As additional per-

formance criterion, we introduce the probabilRy¢(Q) that

a policy Q will succeed. To determine this probability, we
In this section we present results obtained by applying theount the numbek,,; of episodes that did not terminate be-

algorithm discussed in the previous section to stabilize théore a total of 2000 terminating episodes occurred. An epi-

rotor at the fixed pointsy=(6,,9) for g=0, 27, and 47 sode was counted as unterminated if it did not terminate after

and with 64~ 7. Unless otherwise stated, the control Bet 10000 iterations.P+(Q) is then 100k 2000/(2006- \ ).

was restricted tdJ ={0,Umax, —Umax With Una=0.2 and P (u) denotes the probability of satisfying the termination

the noise level was set #@=0.09. In previous work$l,11]  criterion without control. A good policyQ should satisfy

control could be established only up to very low noise IevelsPT(Q)>pT(u) and\g<\,. A lower limit \! for the aver-

(6=0.01 in[11]). The parameters of th@-learning update age number of iterations is given by =P\ +10000(1

rule were set to the constant valugs-0.5 andy=0.9 but  _p y These performance measures are shown in Table |
their particular choice does not influence results much. T%

V. RESULTS

-li ff-li * t ti -
measure the quality of an approximated policy define or on-line (Q) and off-line Q") (see next subsectiomp

. roximated policies for the three goals. Use of the on-line
through theQ values, we mtrod'uce t'he quantb% that mea- aRproximated policy improves performance considerably
sures the average number of iterations per episode, where

episode is an iteration of the system, controlled on the basi ver the unco.n_trolled SySte”!’ but the pphcy _has !OW termi-
of the Q values, starting at a random initial condition until hation probability. To approximate a policy with higher ter-

the criterion for termination of an episode is mef.denotes mination probability, off-line control can be used.

the same quantity for the uncontrolled system. For computa-

tion of A we terminate an episode if the conditidfx, B. Off-line control

—Xp|[<1 is met for 200 consecutive iterations. To better satisfy the requirements of convergence to an

optimal policy off-line control can be performed. In off-line

control, learning is performed-greedy in many episodes
On-line control refers to learning in one episode. Duringwhere each episode is started from a new randomly chosen

system dynamics, starting from a random initial conditioninitial condition. For the learning process, an episode was

A. On-line control

5000 7&0*(8)' . , : . 100PT(8) - : :
25001 ] / FIG. 12. Performance mea-
90 1 sures of the controlled rotor as
4000 , 1 . :
80 | functions of § when usingu,ax
35007 ' ] =0.2 and the policy Q*4x
3000 “ 70 ] learned for 5=0.09. (8) Aqg«(5),
2500¢ : ’ / i 60 . : : . (b) P1(6). At 5~0.2 a sharp drop
2000} 1 in P indicates that control with
1500( : %0 ' ' ' 1 the policy approximated for low
1000} / ] 40 : : A noise levels is unable to stabilize
o] 3 b Xy -

(a) 0 0.05 0.1 0.15 0.2 0.25 (b) 0 0.05 0.1 0.15 0.2 0.25
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v, A\
. . ‘ . 0 2050 30004090 Booo FIG. 13. Controlled dynamics
1000 2000 3000 4000 5000 when using the policy Q.
0.2 05F : * . learned for 6=0.09 for higher
u noise levels. (&) 6=0.2,Unpax
U, oo - 1 n o Op s T =0.2, and(b) 6=0.3,Up,=0.6.
_02 -0.5 : ;
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
n n
(a) (b)

terminated if the condition)|xy—x,|[|<1 was met for five over terminating episodes. ComparindQ and A\, we
consecutive iterations. Learning was performed over 200@learly see the improvement offered by the off-line approxi-
episodes and was decreased from initially one, over 1500 mated policy.

episodes, to zero. During the last 500 episoédegas set to The global character of the approximated policies be-
zero. Figure 7 shows the total number of iterations as a funccomes clearly apparent by looking at the probability density
tion of the episodes for establishing optimal control policiesof the dynamics controlled with the polici&3*. Figure 9

QF, QF , andQ} for stabilizing the goals,, X,,, and  Shows the probability density, approximated as discussed in
0’ Xor’ 4 Pem

: . AP
Xan, Fespectively. A decrease in slope points to convergencgec' lll, of the dynamics controlled with the pOII@xMr.

of the corresponding policy and we observe convergence i¥Ve see that the probability of states not in the neighborhood
all three cases. The slope of the curves during the last epRf X4 IS negligible. . -
sodes is an estimate for the quality of the corresponding ~ 1N€ approximated global polio@;, can be visualized as
policy. From the slopes during the last 200 episodes we gdéb Fig. 10. The dark(light) areas correspond to regions
\§~305,\5_~335, and\}_~568.\%_~335, for example, Where the control,=—0.2 (u,=0.2) is associated with a
means that on average, by using the off-line approximatemaximm state-action value. The' white'areas correspond to
policy Q¥ the dynamics of the controlled rotor will be sta- régions where no controlj,=0, is applied. The effect of
bilized atz;he goak,. after 335 iterations this policy is that points in the neighborhood of the state

In Fig. 8 we shc2)\7/Tv the use of these élobal policies for aare trapped in this region while points in the neighborhood of
sample éontrol problem. Over 80000 iterations, the use ther attracting states are more probable to leave their neigh-
control policy was switched every 20000 iterations as de-: (.)tr.hcl)od. ETS car; be seen frcIJlm F'tg' 1}’ where 10%8. random
scribed in the caption of the figure. We see that in all cased 't condiions from a small rectangle around, [Figs.

control is established almost instantaneously and not lo ! 1(a,?]taanX0 [Flgs.tllltlz,?j)]dwere |_terated. IR Figs. fita’dlo it
during the interval of control. e states for uncontrolled dynamics are shown after it-

In Table | the previously mentioned performance criteriaCrations. while Figs. Ib,d show the states after 10 itera-

are summarized. We can see a considerable improvementi ns for the controlled dynamics. The parameters are as in

the performance of the off-line approximated policies over e last subsgcthn. Comparing F|g.(a)1W|th Fig. 11(b), we .
the on-line approximated policies. Note that for 4s goal, see that application of the control signals prevents dynamics

_ ; _ : from leaving the neighborhood &f, .. As seen from Fig. 10,
Mor =579 Is larger thamo=516 since we average only control in this region is equivalent to a slight decrease of the

forcing. In the neighborhood of other attracting states the

10 controller learned to slightly increase the forcing, which in
turn increases the probability of leaving undesired neighbor-
8r hoods.
L 6t C. Control for higher noise levels
w
vé 1. Using a policy learned for low noise
4_
> We tested the control performance of the poIG@y4 ap-
Al proximated for6=0.09 as described in Sec. V B for larger
values of5. As in the preceding subsection, we measure
: by averaging the number of iterations per episode over 2000
% 01 02 03 0.4 terminating episodes, but here we terminate an episode if

5 [[xg—Xnl|<2 for 200 consecutive episodes.
Fi 1 h Ao* (O d Fig. 12b) P(6) f
FIG. 14. Learning control in the presence of large noise. The igure 12a) shows Qm( ) and Fig. 12b) P~(9) for a

graph showsi,,,(8)/ 8, whereu,,,(8) denotes the minimum per- range of noise levels, with and Pt defined as before and
turbation that achieves on-line control for a givén maximal perturbatioru,,,,=0.2. The policyQ:4 approxi-
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30

FIG. 15. On-line control of ro-
tor for (@) §=0.2, Uy,,,= 0.4, and
(b) 6=0.4, up.=0.8.

0 2000 4000 6000 8000 10000 0.5 1 15 2 25 3x10*

(2) " (b) "

mated at5=0.09 could successfully stabilize,, over a proach to stabilize the period 3 fixed point in the neighbor-
wide range of noise levels up ®~0.2, at which pointP; hood of x,, but needed a set of reference vectors of size
begins to drop sharply below 100%. Figure(@3showsuv, |W]|=200. i . .

for the controlled system a8=0.2 and the applied control The other cpntrol goal we investigated is related_ to the
signalu,,. For larger noise, the noise often kicks the systemProblem of maintenance of chag38]. The goal here is to

out of the desired region and the maximal perturbationorevem the system from a transition of the chaotic state into
Una=0.2 is not sufficient. However, allowing a larger maxi- & stable attracting state. For the rotor a “maintenance” of the
mal perturbation, . and for the same policy, control can be chaotic state means that the system should be kept from en-
established fos=0.3 as can be seen from Fig.(b where tering the neighborhoods of the stable period 1 or period 3

U= 0.6. fixed points. This could certainly be done by adding large
max noise to the system. Instead, here we will demonstrate that

. : . . - rotor through small perturbations to the external forcing by a
Next we investigated if a control policy stabilizing,  gyitable formulation of the reward function. We chose the

can be approxw_nated in the presence of large noise. To th'r%ward functionr . ;=1 if d;>2.5 andds>5 andr, .=

end we determined the smallest valug,,(3) Of Unax O _( 5 otherwise. This punishes all actions leading to states

which, for a givens, x4, can be stabilized through on-line |56 1o period 1 or 3 fixed points. We approximated a main-
control. Figure 14 shows the ratig,,( )/ 6 as function of o -1ce control policy?*,,, off-line. The noise was set to

S. This ratio approaches a limiting value of approximately 25:0 02, the control set wad={0,0.2—0.2, and we used
and can be used to choose the control parameter for differef . < of size IW| =100 mentioned above Figure (55

noise Ievt;alls.l For smatIE E)h?. ratio s gettcljn% Itargert, S'tnhcedshows the negative probability densipfv, ) in the rect-
comparably larger perturbations are needed 1o enter tne ngle[ —5#,57]X[0,27]. We see that the regions in the

sired state-space region due to longer transients. In Fig. ; - -
. eighborhoods of the attracting states have negligible prob-
we show the on-line control of the rotor fdmp) 6=0.2, ab:ﬁty of being visited g v ghgiole p

Umax=0.4, and(b) 6=0.4, u,,,=0.8. It is possible to sta-
bilize the system under the influence of large noise although
much larger system perturbations are needed in this case. VI. CONCLUSIONS

In this paper we have demonstrated the control of a
D. Destabilization of attracting states “simple” complex system, the kicked mechanical rotor, un-

The algorithm, as presented, can be generalized to achieve
more general control goals. An example would be the stabi-
lization of fixed points of period 3 or a destabilization of
attracting states. To describe a suitable measure for detection
if the goal was achieved, we introduce the quantity

”Xn_ ank”

d(Xn) = p—1 ’
ex;{ '21 In )

which is minimal only for fixed points of periokl To stabi-
lize a fixed point of period 3 we applied the rewargl, ;
=1 if dy(x,)<0.02 andr,,, ;= — 0.5 otherwise. This choice
of reward rewards a stabilization of any periOd 3 fixed pOint. FIG. 16. Negative probability density p(v, 6) in the rectangle
Since the rotor has several of these, if a particular period 3—57,57]x[0,27]. Itis §=0.02 andU={0,0.2-0.2 with per-
orbit is desired, we must give positive rewards only if theturbations tof, chosen fromU according to the policy,,,. The
desired orbit was stabilized. We successfully used this apblack areas belong to densities wijth<2x 105,

k>1,

Xn—™Xp-1
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der the influence of noise. Our control method is based oembedding vector§39], must be investigated to make the
reinforcement learning and establishes an optimal contrahpproach more suitable for realistic applications.
policy in terms of an optimal state-action value function de- The presented approach has not yet been applied to sys-
pending on discretized states and control actions. The apgems with riddled basins or more complexly structured phase
proximated control policy acts globally and establishes staspaces, which often occur in applications, and it has to be
bilization of a desired state quickly from any initial condition investigated how to deal with systems evolving in an
even under the influence of large noise. It is interesting tanfinite-dimensional phase space. A combination with a di-
note that control could be established even in regions imMmension reduction technique such as a Karhunen-Loeve de-
which the system’s dynamics are characterized as stochasticomposition might allow us to reduce the system to a finite-
The presented approach neither assumes knowledge nor mimensional system in certain situations. Furthermore, the
quires estimation of an analytical description of the systentontrol of more complicated dynamics such as quasiperiodic
dynamics. All information required to find an optimal policy orbits (invariant circle$ or chaotic saddles still has to be
is obtained through interaction with the environment. Thisinvestigated. Our results on “maintenance of chaos” provide
does, however, not mean that we suggest not to use informa-first step in this direction.
tion about the system when this is available. Reinforcement Current research in the reinforcement learning literature is
learning is flexible and allows to include additional con-focusing on the development of algorithms suitable in con-
straints in the algorithm, as we did when selecting specificinuous phase and action spaces and on the application of
fixed points or period 3 orbits. reinforcement learning to high-dimensional systems. Suc-
In certain applications, such as medical applications, itesses in the field of reinforcement learning could be applied
might be impossible to interact with the system to be conto the control of complex systems. On the other hand, the
trolled. If a good model is available then the policy can becontrol of complex systems provides an interesting set of
established through an interaction with the model dynamicsproblems for the testing of new reinforcement learning con-
If no model is available then it is necessary to combinetrol algorithms.
model approximation techniques with reinforcement learn- Our results in this paper suggest that the proposed method
ing, i.e. a model of the system is approximated together withmight lead to a variety of interesting applications in the field
the control policy[26]. Of particular interest for future re- of complex dynamical systems. In particular, the combina-
search is the combination of vector quantization and modeiion with other existing methods could lead to more flexible
approximation techniques as suggested38,3q with the  and versatile control techniques. Possible implications for
approximation of the control policy. neural information processing have to be investigated and
The method requires a discrete state representation, whickill be a topic of future research. One of the goals here will
was computed in advance from sample data with the neurabe the development of an information processing or pattern
gas algorithm. Many different vector quantization techniquegetrieval device, which is based on the principle of our con-
exist in the literature and can be used instead. The questidnol strategy.
of how to obtain an optimal discrete representation must still
be investigated. Future research will attempt to combine the
approximation of the finite representation with the policy
approximation that can lead to representations suited for the We wish to thank U. Feudel for bringing this problem to
particular control problem. Furthermore, the application toour attention and pointing out to us a very interesting area of
systems with a reconstructed phase space, such as a spaceeasfearch.
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