
PHYSICAL REVIEW E, VOLUME 63, 036217
Learning to control a complex multistable system
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In this paper the control of a periodically kicked mechanical rotor without gravity in the presence of noise
is investigated. In recent work it was demonstrated that this system possesses many competing attracting states
and thus shows the characteristics of a complex multistable system. We demonstrate that it is possible to
stabilize the system at a desired attracting state even in the presence of high noise level. The control method is
based on a recently developed algorithm@S. Gadaleta and G. Dangelmayr, Chaos9, 775~1999!# for the control
of chaotic systems and applies reinforcement learning to find a global optimal control policy directing the
system from any initial state towards the desired state in a minimum number of iterations. Being data-based,
the method does not require any information about governing dynamical equations.
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I. INTRODUCTION

The long-term behavior of nonlinear dynamical system
generally classified as either stationary, periodic, quasip
odic, or chaotic. These types of behaviors and their con
are well studied and understood if the available states
well separated and their dimensions rather low. In rec
years the attention has shifted to systems exhibiting m
complex behaviors such as many coexisting attracting sta
In general the term ‘‘complexity’’ has been coined to deno
systems that have both elements of order and elemen
randomness@1#. Such systems typically, but not necessari
have many degrees of freedom, are composed of many c
plicated inter-related parts, and possess competing attra
sets. Minor perturbations induced, for example, by noise,
cause the system to undergo random transitions between
ferent attracting states. Furthermore, due to the nontri
relationship between the coexisting states and their basin
attraction, a final state depends crucially on the initial con
tions @2#. This behavior is calledmultistability and was first
studied experimentally in@3# and since then was observed
a variety of systems from different areas such as phy
@4–6#, chemistry@7#, and neuroscience@8#. Adding noise to a
multistable system will generate complex behavior and
duce competition between the attractiveness towards reg
motion in the neighborhood of an attracting state and
jumping between basins of attractions induced by noise@2#.
The dynamics is then characterized by a large numbe
periodic attractors ‘‘embedded’’ in a sea of transient cha
@1#. The time the system spends in an attracting state co
sponds to its ‘‘ordered’’ phase, and the transient time to
‘‘random’’ phase. Added noise can prevent the system fr
settling down into an ordered phase.

Besides their importance for specific applications, a f
ther motivation to study the dynamics and control of su
complex systems is their possible role as information p
cessing devices in neural information processing@9#. Com-
plex systems are characterized by a very large numbe
coexisting states and, with adequate noise, the system
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rapidly access these ordered states. The control of such
tems, in particular under noisy conditions, would then of
the opportunity to utilize this multistable behavior for th
processing and storage of information, i.e., different orde
states are identified with different ‘‘memorized’’ pieces
information. External input can be thought of as triggering
certain control mechanism that stabilizes a selected ord
state that would be associated with the given input.

The simplest prototype of a complex multistable system
provided by the model equations of a periodically kick
mechanical rotor@10,11,2# whose quantum mechanical cou
terpart plays an important role in the study of quantum ch
@12#. Until now, control was achieved for low noise leve
through a simple feedback mechanism@11# that perturbs di-
rectly all system variables and requires computation of
Jacobian of the map close to the desired state. Moreover,
control technique is only local, i.e. the control is usua
switched on only if the system is close to the desired state
@11# the Jacobian was computed from the model equatio
In many real-world applications, this information will not b
available and specifically in the context of neural inform
tion processing it is unrealistic to base control methods
the basis of analytical knowledge of governing system eq
tions. In some cases, the Jacobian can be estimated
observed data as suggested in@13#. In the presence of noise
however, this estimation can become very difficult.

Learning algorithms that do not require any analytic
knowledge can be based on reinforcement learning an
recent works@14,15# reinforcement learning was shown t
play an important role in neural information processing. It
therefore interesting to investigate the control of comp
systems through reinforcement learning.

Related to the control of complex systems is the contro
chaos. The use of reinforcement learning to control cha
systems was first suggested by Der and Herrmann@16# who
applied it to the logistic map. In@17# we generalized the
method and applied it to the control of several discrete a
continuous low-dimensional chaotic and hyperchaotic s
tems and recently to coupled logistic map lattices@18#. Lin
and Jou@19# proposed a reinforcement learning neural n
work for the control of chaos and applied it to the logis
and the He´non map. To control chaotic systems, unsta
states embedded in the chaotic attractor are stabilized
©2001 The American Physical Society17-1
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SABINO GADALETA AND GERHARD DANGELMAYR PHYSICAL REVIEW E 63 036217
control multistable systems, the desired state is typically c
sen to be one of the many existing attracting states. Th
states aremetastable~stable only for a finite time! above a
certain noise level and the control must stabilize dynam
against noise.

Although the characteristics of the stabilized state in
chaotic system differ from the desired state in a multista
system, we will show in this paper for the case of a perio
cally kicked rotor that the method developed in@17# for cha-
otic systems is also well suited for the control of compl
multistable systems in the presence of significant noise
els. Instead of perturbing the system state directly, we ap
parametric control.

II. BASIC EQUATIONS

The differential equation describing the temporal evo
tion of the phase angleu of a forced damped pendulum wit
forcing f (t) and dampingd is given by

u91du85 f ~ t !sinu. ~2.1!

If the external force acts periodically and impulsively on t
rotor,

f ~ t !5 f 1(
n

d~ t2n!, ~2.2!

the dynamics is most conveniently described by its ret
map. Letu(t) be the solution at timet and letun5u(n) be
its value at thenth kick. Due to thed-forcing the velocity
u8(t) shows a discontinuity att5n,

u8~n10!2u8~n20!5 f 1 sinun , ~2.3!

whereasu(t) is continuous. The solution between two su
cessive kicks is then given by

u~ t !5un2
l n

d
~e2d(t2n)21!, n<t<n11,

~2.4!
l nªu8~n20!1 f 1 sinun .

It follows

un115un2
l n

d
~e2d21! ~2.5!

and

l n5 l n21e2d1 f 1 sinun . ~2.6!

For simplicity we setc512e2d (0,c<1). Equation~2.5!
with n replaced byn21 yieldsun215(d/c)(un2un21) and
from Eq. ~2.6! we obtain

l n5
d

c
~12c!~un2un21!1 f 1 sinun , ~2.7!

which, when substituted back into Eq.~2.5!, leads to a ‘‘fi-
nite difference form’’ for the phase angleun ,
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un1122un1un211c~un2un21!5 f 0 sinun , ~2.8!

where f 05c f1 /d. By introducing the new variableyn5un
2un21, we obtain from Eq.~2.8! the dissipative standard
map

yn115~12c!yn1 f 0 sinun ,
~2.9!

un115un1yn11 ~mod 2p!,

which is related to the system just before successive kic
Introducing the variablevn5yn11 we can rewrite this map in
the form

un115un1vn ~mod 2p!,
~2.10!

vn115~12c!vn1 f 0 sin~un11!,

which describes the state of the system just after two suc
sive kicks. The map~2.10! was extensively studied in@10#.
For c50 it results in theChirikov standard map@20#. In this
undamped, Hamiltonian limit the state space consists o
chaotic sea interspersed with regular motion represented
stability islands of stable periodic orbits. The largest regio
of regular motion are made up by the islands of the prim
periodic orbits. These are the fixed points~period 1, u
5p,v52mp, m50,61, . . . ) andhigher period periodic
orbits that are present forf 050. Further, secondary stabl
periodic orbits occur forf 0Þ0. Their islands are groupe
around the primary islands and are in general much sma
inducing a hierarchical organization of the stable perio
orbits @10,21#. We note that in the undamped case the ran
of the velocity v can also be identified with a circle
(v mod 2p), i.e. the infinitely extended cylindrical phas
space is compactified to a torus. On the torus the infin
family of primary fixed points is represented by a sing
point, but the number of all periodic orbits is still assumed
be infinite @21#.

On the other hand, for very strong damping (c'1) one
obtains the one-dimensionalcircle map with a zero phase
shift,

vn115vn1 f 0 sinvn , ~2.11!

which exhibits the usual Feigenbaum scenario for the tra
tion to chaos. In particular, this map possesses only one
tractor in large regions of the phase space@21#.

When a small amount of dissipation (0,c!1) is added
to the undamped system, stable periodic orbits turn into si
or disappear. The parameter dependence of the sinks
their basins of attraction have been studied numerically
Feudelet al. @10#. We shortly summarize some of the ma
results of this study. ForcÞ0 the range ofv can no longer
be identified with a circle. The phase space is now an i
nitely extended cylinder on which we find an infinite numb
of stable periodic orbits in the limitc→0, in particular the
primary family of fixed points, denoted byP1. For c.0 all
trajectories are eventually trapped in the finite cylinderuvu
< f 0 /c that contains all attractors. The number of sinks
now finite, but can be made arbitrarily large by choosingc
7-2
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LEARNING TO CONTROL A COMPLEX MULTISTABLE SYSTEM PHYSICAL REVIEW E63 036217
sufficiently small. Specifically, only a finite number of th
formerly infinite P1 family can be present. These fixe
points still havev52pm but the phases are now differe
and the size of the attraction basins quickly decreases
increasingumu. The main fixed point,P1

0 (m50), has the
largest basin. In addition, whenf 0 is varied one finds births
of sinks in saddle node bifurcations and their disappeara
in period-doubling sequences, but the resulting chaotic
rameter regimes are extremely small.

Concerning basin boundaries, these appear all to be f
talized giving rise to chaotic transients along chaotic sadd
and hence to uncertainty in initial conditions. The quest
as to which extent the basins are riddled has only partly b
addressed in@10#. The basins of theP1 family contain full
~though small in size for largerm) neighborhoods of the
fixed points and, therefore, cannot be fully riddled, but p
tial riddling as defined in@22# is not excluded. The basins o
other periodic orbits are smaller and full riddling might occ
in some cases, but this requires further investigation. In s
mary, the kicked rotor with small dissipation serves as
example of a multistable system characterized by a com
cated coexistence of many periodic sinks with sensitive
pendence on initial conditions.

The complexity of multistable systems can further be
hanced through the introduction of noise, which leads to
predictable transitions between different attracting states
vealed by almost periodic motion interspersed by rand
bursts@2#. In addition Krautet al. @2# observed a decrease
the number of accessible states. Their results indicate tha
noise induces a preference of certain attractors.

In the following sections we show that the multistab
rotor can be stabilized at a desired attracting state throu
control method based on reinforcement learning. We sh
that control can be achieved up to noise levels as high ad
50.4 @see Eq.~3.1! below#. As control parameter we choos
the forcing f 0. The allowed control actions consist of sma
discrete perturbations off 0.

III. THE NOISY UNCONTROLLED ROTOR

The system investigated by Krautet al. @2# has the form

un115un1vn1du ~mod 2p!,
~3.1!

vn115~12c!vn1 f 0 sin~un11!1dv ,

wheredu and dv are the components of the uniformly an
independently distributed noise vector with bounded no
Adu

21dv
2<d. Throughout this section we set the unperturb

forcing to f 053.5 and the damping toc50.02. For these
parameter values Krautet al. @2# found numerically 111
stable periodic orbits in the noiseless limit. Most of the
orbits belong to theP1 family (u5um ,v52mp) and some
of them have period 3. Only 0.01% of all found orbits ha
periods other than 1 and 3, so these orbits do not play
important role. With noise added, Krautet al. @2# observed
three different types of behavior. For small noise leveld
,'0.05) thetrajectory may be trapped in the open neighb

hood of an attractor forever. For intermediate noise le
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(0.05,'d,'0.1) attracting periodic orbits still could be iden

tified. However, when an attracted region around such
orbit is reached, the noise will eventually drive the system
the basin boundary where it then follows for a while a ch
otic saddle until it reaches a neighborhood of another att
tor. The resulting dynamics is characterized by almost p
odic motion interrupted by bursts, and the smaller the no
is the larger are the regular phases. This behavior is refe
to as attractor hopping and may also be considered as n
induced chaos. In a sense, sinks of the noiseless system
into saddles of a ‘‘noise-induced chaotic attractor.’’ Contro
ling a periodic orbit in this regime resembles the control
an unstable periodic orbit embedded in a chaotic attracto
a deterministic system. However, while in the determinis
case unstable directions have to be avoided by forcing
system to remain on the stable manifold, in the noisy c
random pushes towards the basin boundary have to be
pressed. It is therefore questionable whether Ott-Greb
Yorke–type methods@13# work in the noisy case becaus
stable and unstable manifolds can hardly be identified.

Which of the periodic orbits of the noiseless system
observed when noise is present depends on the sizes of
basins and the noise level. For example, ford50.09, we
observe hopping between fixed points of the primary fam
P1, but no period 3 orbits could be identified, see Fig.
When the noise level is reduced, period 3 orbits occur
addition to the primary fixed points. In Fig. 2 we show th
probability density p(v,u) in the rectangle@27p,7p#
3@0,2p# for ~a! d50.02 and~b! d50.09. Covering the rect-
angle with an 80380 grid the density was numerically gen
erated by iterating 1000 initial conditions for 1000 iteratio
and counting the visits to each grid cell. In Fig. 2~a! we
clearly see small peaks corresponding to period 3 orbits
surround the large peaks corresponding to the primary fi
points. In Fig. 2~b! the small peaks have disappeared and
large peaks are broadened, suggesting that the attraction
sins of the period 3 orbits are now absorbed in the ba
boundaries of the primary fixed points.

For increasing noise leveld the jumps become more an
more frequent up to a point where the system does not
main in a stable state for more than a few iterations. Kr

FIG. 1. Dynamics of the noisy kicked rotor forf 053.5, c
50.02, andd50.09.
7-3



SABINO GADALETA AND GERHARD DANGELMAYR PHYSICAL REVIEW E 63 036217
FIG. 2. Probability density
p(v,u) in the rectangle
@27p,7p#3@0,2p# for ~a! d
50.02 and~b! d50.09.
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ds.
et al. @2# refer to this type of behavior as predominance
diffusion due to noise, the system behaves now truly stoch
tically. The transition from hopping to diffusion is marke
by a sharp increase of the exponent of the autocorrela
function of a noisy trajectory that occurs in a range ab
d50.1 @2#. In the diffusion-dominated regime the fine stru
ture of the basins is blurred by noise, but some of this str
ture is still present preventing the motion from being a p
(d-correlated! random process. A typical time series in th
diffusive regime is shown in Fig. 3~a! for d50.3. Figure 3~b!
shows the corresponding phase plot.

In the following, we will use the notationxn5(un ,vn)
PX5T13R to denote the state of the rotor at thenth itera-
tion. We will attempt to control the system~3.1! through
small discrete perturbationsun of f 0,

f n5 f 01un . ~3.2!

IV. THE CONTROL ALGORITHM

In this section, we describe the control algorithm used
stabilize the noisy rotor at a prescribed state. As mentio
in the last section, we control the rotor through small discr
state-dependent perturbationsu(x) of the applied forcingf 0.
The dynamics of the controlled system can then be writte
the form

un115un1vn1du ~mod 2p!,
~4.1!

vn115~12c!vn1~ f 01un!sin~un1vn!1dv ,

whereun5u(xn) represents the state-dependent control p
turbation applied to the external forcingf 0 at thenth itera-
tion step.
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In terms of optimal control theory@23#, the task is to find
an optimal control policyp* (x,u) associating to every stat
x a control u such that the control goal is achieved in a
optimal way. Concerning the control of the rotor, an optim
policy should allow the stabilization of a prescribed state a
in addition allow to reach its neighborhood in a minimu
number of iterations from any initial condition.

If analytical knowledge on system dynamics is availab
methods from optimal control theory such as dynamic p
gramming@24# or Lagrangian relaxation@25# can be used to
establish an optimal control policy. Here we do not assu
that such analytical knowledge is available. Then reinfor
ment learning@26#, also known as neurodynamic program
ming @27#, which has been shown to find good solutions
optimal control problems@27#, can be applied. Even if ana
lytical knowledge on system dynamics is available, re
forcement learning is often applied instead of analytical te
niques since it is easier to implement and computation
often more efficient@27#.

A. Reinforcement learning

Reinforcement learning methods offer a solution to t
problem of learning from interaction of a decision make
called agent, with a controlled environment to achieve
goal. At each discrete time stepn51,2, . . . theagent re-
ceives a representationwnPW of the environment’s state
xnPX, whereW is the~finite! set of all possible state repre
sentations. On the basis ofwn , the agent selects a control~or
action! unPU, the set of all available actions. The control
selected according to a policyp, which is described by a
probability distributionpn(w,u) of choosingun5u if wn
5w. One time step later, as a consequence of the controlun ,
the agent receives a numerical rewardr n11 and a new state
wn11. The goal is to maximize the accumulated rewar
e-
FIG. 3. ~a! Dynamics of the
noisy kicked rotor ford50.3. ~b!
Corresponding phase plane repr
sentation of the dynamics.
7-4
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LEARNING TO CONTROL A COMPLEX MULTISTABLE SYSTEM PHYSICAL REVIEW E63 036217
Reinforcement learning methods offer ways of improving
policy through observations of delayed rewards to find
optimal policy that associates with each state an optimal c
trol such that rewards are maximized over time.

Problems with delayed reinforcements are well mode
as finite Markov decision processes~MDPs!. A finite MDP
consists of a finite set of stateswPW and controlsuPU, a
reward functionR(w,u) specifying the expected instanta
neous reward of the current state and action, and a s
transition functionPu(w8,w) denoting the probability of a

FIG. 4. The setW of 100 reference vectorsw and their corre-
sponding Voronoi cells obtained through a neural-gas vector qu
tization of 10 000 data points of the uncontrolled dynamics withd
50.3.

FIG. 5. Summary of the proposed rotor control algorithm ba
on Q learning. Both the on-line and off-line versions are shown
03621
e
n
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transition from statew to w8 using controlu. The model is
Markovian if the state transitions depend only on the curr
state and control.

In general one seeks to maximize the expectation valu
the discounted return

r̂ n5 (
k50

`

gkr n1k11 , 0<g,1. ~4.2!

Most reinforcement learning algorithms are based on e
mating the state-action value function

Qp~w,u!5Ep$ r̂ nuwn5w,un5u%, ~4.3!

which gives the value of a state-action pair under a cer
policy. An optimal state-action value functionQ* (w,u) is
defined for given (w,u) as the maximum over the set of a
policiesp,

Q* ~w,u!5max
p

Qp~w,u!. ~4.4!

Given an optimal state-action value functionQ* (w,u),
choosing in any statew the actionu* with associated maxi-
mal valueQ* ,

u* ~w!5arg max
uPU

Q* ~w,u!, ~4.5!

leads to an optimal control strategy. Here arg maxu denotes
the value ofu at which the expression that follows is max
mized.

One can show@28# that Q* satisfies the Bellman fixed
point equation

Q* ~w,u!5R~w,u!1g (
w8PW

Pu~w8,w!max
u8

Q* ~w8,u8!.

~4.6!

With available analytical knowledge on system dynami
i.e., R and P are known, the solutionQ* can be found
through dynamic programming@23,26#. For unknownR,P

n-

d

FIG. 6. On-line control of the rotor dynamics withd50.09 and
U5$0,0.2,20.2%. Initially the control goal isx0. After 30 000
iterations the control goal is switched tox2p and after 60 000 itera-
tions tox4p .
7-5
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TABLE I. Comparison of on-line~Q! and off-line (Q* ) controlled systems with the uncontrolled syste
See text for details.

PT(u) PT(Q) PT(Q* )
Goal lu ~%! lu

l lQ ~%! lQ
l lQ* ~%! lQ*

l

0 524 27 7441 590 46 5671 398 98 590
2p 582 22 7928 557 48 5467 417 99 512
4p 1700 10 9170 516 56 4688 579 98 767
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temporal-difference learning@29# offers a way to estimate
Q* . In temporal-difference learning,Q* is found through a
stochastic Robbins Monro approximation@30# according to
an update rule of the form@17#

Qn115Qn1DQn , ~4.7!

where the updateDQn is based on observations of th
present state (wn ,un) and the next state (wn11 ,un11). A
particular choice ofDQn is given by Watkin’sQ learning
@31#,

DQn~wn ,un!5bn@r n111g max
uPU

Q~wn11 ,u!2Q~wn ,un!#,

~4.8!

wherer n11 represents an immediate reward received for p
forming the controlun in statewn . In this work we punish
unsuccessful actions by settingr n11520.5 whenever at the
(n11)th iteration the goal was not achieved and otherw
we setr n1151.

Q learning can be proven to converge towardsQ* , if the
whole state space is explored andbn is slowly frozen to zero
@32#. In real applications, due to time constraints, it w
rarely be possible to satisfy this requirement and one o
uses a fixedb, bn5b @26#. Then the estimated policy wil
not be the globally optimal one but an approximation to
To ensure exploration of the whole state space, control
tions are chosen from the correspondingQ values according
to a specified policy that initially chooses actions stocha
cally and is slowly frozen into a deterministic policy. Th
can, for example, be achieved throughe-greedy policiespe
@26#. Here, an action that is different from the greedy act
~the one with maximal estimated action value! is chosen with
probabilitye, wheree is initially one and then slowly frozen
to zero, i.e.,

pe~w,u!5H 12e1e/uUu, u5u*

e/uUu, uÞu* .
~4.9!

In Eq. ~4.9!, uUu denotes the cardinality ofU andpe(w,u) is
the probability of choosing actionu in statew. We call a
policy greedy or deterministic if exclusively the best acti
u* is chosen (e[0). An optimal state-action value functio
Q* associates with each statew a controlu such that when
control actions are performed according to a greedy po
from Q* the goal is achieved in an optimal way. In this wo
we will measure the optimality of a policy in terms of th
average number of iterationsl it takes to achieve the goa
03621
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when starting from a random initial condition~iterations per
episode!. The goal will be to stabilize a prescribed state.

B. Representation of state space

The reinforcement learning algorithm presented in the
subsection requires a finite state representationW and a finite
action spaceU. The complexity of the reinforcement learn
ing problem increases exponentially with the size ofW and
U, and it is desirable to keep the sizesuWu,uUu of the setsW
andU small.

Concerning the action space, we choose a minimal p
sible set of actionsU5$0,umax,2umax% acting on the exter-
nal forcing: f 0→ f 01un ,unPU. umax will be small com-
pared tof 0. In other words, the actions are restricted to eith
force the system slightly stronger, slightly less, or with
unchanged forcing.

The setW represents a finite approximation to the tr
state spaceX and we will constructW through a vector quan
tization technique. The outcome of the vector quantization
a setW of reference vectorswPW, which partitionsX into
so-called Voronoi cells whose centersw form the necessary
discrete-state approximation. Each statexPX is projected to
exactly onew(x)PW, wherew(x) is the closest referenc
vector according to some~usually Euclidean! norm

w~x!5arg min
wPW

uux2wuu. ~4.10!

To every reduced statew, we associate an allowed set o
controlsU(w). In this work the setU is fixed for all w. To
each possible pair of reduced statew and allowed control
signaluPU, we associate a state-action valueQ(w,u) rep-
resenting the value of performing controlu when the system
is in statex, such thatw5w(x). Whenever the system is in
a statex, its corresponding reference vectorw(x) is identi-
fied and a controlu(x) is chosen from the setU according to
the policy defined through the valuesQ„w(x),u….

Vector quantization methods have been used in appl
tions such as time series prediction@33# or chaos control
@16,17# to construct a finite state-space approximation. S
cifically the neural-gas algorithm@33# has been shown to b
well suited for the approximation of chaotic attractors sin
it is topology preserving@34#.

To approximate the state space of the noisy rotor we
plied the neural-gas algorithm@33# with N5100 reference
vectors to the set of data pointsx obtained from simulations
with d50.3 shown in Fig. 3~b!. The centers resulting from
the neural-gas quantization are shown in Fig. 4 together w
their Voronoi cells.
7-6
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We are not certain whether the proposed algorithm can
successfully applied to the control of attractors with fu
riddled basins of attraction. The periodic orbits whose c
trol will be demonstrated in the next section possess reg
in phase space~in particular regions close to the attractor!
that are dominated by points leading to the same attrac
state. In these regions the reduced representation can r
sent the true phase spaceX as long as the representation
fine enough. We will see in the next section that the co
book of sizeuWu5100 as shown in Fig. 4 leads to success
control of the fixed points of theP1 family. For stabilization

FIG. 7. Off-line control of the rotor dynamics withd50.09 and
U5$0,0.2,20.2%. The curves labeledxg50, xg52p, and xg

54p represent the total number of iterations~the sum over the
iterations of the performed episodes! during the learning process fo
control of the goalxxg

. e is slowly frozen from initially one to zero.
With increasing number of episodes and decreasinge, a decrease in
the slope of the curve shows convergence of the control pol
During the last 500 episodese was set to zero. The limiting slop
~number below the curves! is an estimate ofl for the particular
policy.

FIG. 8. Off-line control of the rotor dynamics withd50.09 over
80 000 iterations. The control policy is reset every 20 000 iterati
from initially Qx4p

* to Qx2p
* , Qx0

* and back to the initial policyQx4p
* .
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of period 3 orbits, however, a finer set of sizeuWu5200 was
necessary. We emphasize here that the discrete phase-
representation concerns only the control strategy. The
namics itself evolves in the full continuous phase space. T
is certainly consistent with the requirements of real wo
applications where a finite state representation is inevita

In this paper we treat the construction ofW and the ap-
proximation of the control policy as separate steps in
algorithm and we choose the size ofW in advance. This is
not necessary since both steps can be combined. Specifi
the combination of growing vector quantization metho
~e.g., @35,36#! with the approximation of the control policy
can lead to minimal codebooks well suited for specific co
trol problems as initial results concerning chaos control s
gest@37#.

The complete algorithm for the approximation of a co
trol policy, i.e., a setQ of state-action values, is presented
Fig. 5 for on-line and off-line control as described in the ne
section. Once a control policy is established, the system
controlled by choosing the perturbationsun(x)PU greedy
with respect to the associated state-action val
Q„w(x),•….

y.

s

FIG. 9. Probability density p(v,u) in the rectangle
@27p,7p#3@0,2p# when using policyQ* 4p for d50.09.

FIG. 10. Visualization of the policyQx4p
* . The dark~light! gray

areas correspond to regions where the controlun520.2 (un

50.2) is associated with a maximal state-action value. In the w
areas no control will be applied.
7-7
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V. RESULTS

In this section we present results obtained by applying
algorithm discussed in the previous section to stabilize
rotor at the fixed pointsxg5(ug ,g) for g50, 2p, and 4p
and with ug'p. Unless otherwise stated, the control setU
was restricted toU5$0,umax,2umax% with umax50.2 and
the noise level was set tod50.09. In previous works@1,11#
control could be established only up to very low noise lev
(d50.01 in @11#!. The parameters of theQ-learning update
rule were set to the constant valuesb50.5 andg50.9 but
their particular choice does not influence results much.
measure the quality of an approximated policy defin
through theQ values, we introduce the quantitylQ that mea-
sures the average number of iterations per episode, whe
episode is an iteration of the system, controlled on the b
of the Q values, starting at a random initial condition un
the criterion for termination of an episode is met.lu denotes
the same quantity for the uncontrolled system. For comp
tion of l we terminate an episode if the conditionuuxg
2xnuu,1 is met for 200 consecutive iterations.

A. On-line control

On-line control refers to learning in one episode. Duri
system dynamics, starting from a random initial conditi

FIG. 11. Local performance of the policyQx4p
* . Shown are the

points obtained after 10 iterations (d50.09) with 1000 initial con-
ditions (u,v) randomly chosen from a small rectangle~as shown!
around~a!,~b! x4p and~c!,~d! x0. ~a!,~c! shows uncontrolled dynam
ics and~b!,~d! shows dynamics controlled according to the poli
Qx4p

* .
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with all Q values set to zero, control perturbations, chos
greedy from the current set ofQ values, are applied to the
forcing function and the control algorithm updates theQ
function from immediate rewardsr n11, wherer n11520.5
if ixg2xni.1 and r n1151 otherwise.~Note that we can
easily generalize the algorithm to situations where the ex
location of the fixed point, i.e.,xg , is unknown. See@17# for
details.! Eventually the controller will find a successful con
trol strategy and keep the system stabilized in the des
state. Figure 6 shows on-line control of the noisy rotor w
d50.09. Initially the control goal was to stabilize the syste
in the statex0. After 30 000~60 000! iterations,Q was reset
to zero and the control goal changed to the stabilization
x2p (x4p). We see that the controller is able to stabilize t
rotor at the desired location after only a small number
iterations in all three cases. In a similar fashion, we w
able to stabilize all fixed points (ug ,g) with g562mp for
m up to 4.

In Table I we summarize the performance of the appro
mated policies for stabilizing the different goalsxg . l was
averaged over 2000 terminating episodes. As additional
formance criterion, we introduce the probabilityPT(Q) that
a policy Q will succeed. To determine this probability, w
count the numberlnt of episodes that did not terminate b
fore a total of 2000 terminating episodes occurred. An e
sode was counted as unterminated if it did not terminate a
10 000 iterations.PT(Q) is then 10032000/(20001lnt).
PT(u) denotes the probability of satisfying the terminatio
criterion without control. A good policyQ should satisfy
PT(Q)@PT(u) andlQ!lu . A lower limit l l for the aver-
age number of iterations is given byl l5PTl110 000(1
2PT). These performance measures are shown in Tab
for on-line ~Q! and off-line (Q* ) ~see next subsection! ap-
proximated policies for the three goals. Use of the on-l
approximated policy improves performance considera
over the uncontrolled system, but the policy has low term
nation probability. To approximate a policy with higher te
mination probability, off-line control can be used.

B. Off-line control

To better satisfy the requirements of convergence to
optimal policy off-line control can be performed. In off-lin
control, learning is performede-greedy in many episode
where each episode is started from a new randomly cho
initial condition. For the learning process, an episode w
-
s

e

FIG. 12. Performance mea
sures of the controlled rotor a
functions of d when usingumax

50.2 and the policy Q* 4p
learned ford50.09. ~a! lQ* (d),
~b! PT(d). At d'0.2 a sharp drop
in PT indicates that control with
the policy approximated for low
noise levels is unable to stabiliz
x4p .
7-8
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FIG. 13. Controlled dynamics
when using the policy Q4p*
learned for d50.09 for higher
noise levels. ~a! d50.2,umax

50.2, and~b! d50.3,umax50.6.
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terminated if the conditionuuxg2xnuu,1 was met for five
consecutive iterations. Learning was performed over 2
episodes ande was decreased from initially one, over 150
episodes, to zero. During the last 500 episodese was set to
zero. Figure 7 shows the total number of iterations as a fu
tion of the episodes for establishing optimal control polic
Qx0

* , Qx2p
* , andQx4p

* for stabilizing the goalsx0 , x2p , and

x4p , respectively. A decrease in slope points to converge
of the corresponding policy and we observe convergenc
all three cases. The slope of the curves during the last
sodes is an estimate for the qualityl* of the corresponding
policy. From the slopes during the last 200 episodes we
l0* '305, l2p* '335, andl4p* '568. l2p* '335, for example,
means that on average, by using the off-line approxima
policy Qx2p

* the dynamics of the controlled rotor will be sta

bilized at the goalx2p after 335 iterations.
In Fig. 8 we show the use of these global policies fo

sample control problem. Over 80 000 iterations, the u
control policy was switched every 20 000 iterations as
scribed in the caption of the figure. We see that in all cas
control is established almost instantaneously and not
during the interval of control.

In Table I the previously mentioned performance crite
are summarized. We can see a considerable improveme
the performance of the off-line approximated policies ov
the on-line approximated policies. Note that for 4p as goal,
lQ* 5579 is larger thanlQ5516 since we averagel only

FIG. 14. Learning control in the presence of large noise. T
graph showsumax(d)/d, whereumax(d) denotes the minimum per
turbation that achieves on-line control for a givend.
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over terminating episodes. ComparinglQ
l and lQ*

l we
clearly see the improvement offered by the off-line appro
mated policy.

The global character of the approximated policies b
comes clearly apparent by looking at the probability dens
of the dynamics controlled with the policiesQ* . Figure 9
shows the probability density, approximated as discusse
Sec. III, of the dynamics controlled with the policyQx4p

* .
We see that the probability of states not in the neighborh
of x4p is negligible.

The approximated global policyQx4p
* can be visualized as

in Fig. 10. The dark~light! areas correspond to region
where the controlun520.2 (un50.2) is associated with a
maximal state-action value. The white areas correspon
regions where no control,un50, is applied. The effect of
this policy is that points in the neighborhood of the statex4p

are trapped in this region while points in the neighborhood
other attracting states are more probable to leave their ne
borhood. This can be seen from Fig. 11, where 1000 rand
initial conditions from a small rectangle aroundx4p @Figs.
11~a,b!# andx0 @Figs. 11~c,d!# were iterated. In Figs. 11~a,c!
the states for uncontrolled dynamics are shown after 10
erations, while Figs. 11~b,d! show the states after 10 itera
tions for the controlled dynamics. The parameters are a
the last subsection. Comparing Fig. 11~a! with Fig. 11~b!, we
see that application of the control signals prevents dynam
from leaving the neighborhood ofx4p . As seen from Fig. 10,
control in this region is equivalent to a slight decrease of
forcing. In the neighborhood of other attracting states
controller learned to slightly increase the forcing, which
turn increases the probability of leaving undesired neighb
hoods.

C. Control for higher noise levels

1. Using a policy learned for low noise

We tested the control performance of the policyQx4p
* ap-

proximated ford50.09 as described in Sec. V B for large
values ofd. As in the preceding subsection, we measurel
by averaging the number of iterations per episode over 2
terminating episodes, but here we terminate an episod
ixg2xni,2 for 200 consecutive episodes.

Figure 12~a! showslQx4p
* (d) and Fig. 12~b! PT(d) for a

range of noise levels, withl and PT defined as before and
maximal perturbationumax50.2. The policyQx4p

* approxi-

e
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FIG. 15. On-line control of ro-
tor for ~a! d50.2, umax50.4, and
~b! d50.4, umax50.8.
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mated atd50.09 could successfully stabilizex4p over a
wide range of noise levels up tod'0.2, at which pointPT
begins to drop sharply below 100%. Figure 13~a! showsvn
for the controlled system atd50.2 and the applied contro
signalun . For larger noise, the noise often kicks the syst
out of the desired region and the maximal perturbat
umax50.2 is not sufficient. However, allowing a larger max
mal perturbationumax and for the same policy, control can b
established ford50.3 as can be seen from Fig. 13~b!, where
umax50.6.

2. Learning control in the presence of large noise

Next we investigated if a control policy stabilizingx4p

can be approximated in the presence of large noise. To
end we determined the smallest valueumax(d) of umax for
which, for a givend, x4p can be stabilized through on-lin
control. Figure 14 shows the ratioumax(d)/d as function of
d. This ratio approaches a limiting value of approximately
and can be used to choose the control parameter for diffe
noise levels. For smalld the ratio is getting larger, sinc
comparably larger perturbations are needed to enter the
sired state-space region due to longer transients. In Fig
we show the on-line control of the rotor for~a! d50.2,
umax50.4, and~b! d50.4, umax50.8. It is possible to sta
bilize the system under the influence of large noise altho
much larger system perturbations are needed in this cas

D. Destabilization of attracting states

The algorithm, as presented, can be generalized to ach
more general control goals. An example would be the sta
lization of fixed points of period 3 or a destabilization
attracting states. To describe a suitable measure for dete
if the goal was achieved, we introduce the quantity

dk~xn!5
ixn2xn2ki

expS (
i 51

p21

lnI xn2xn21I D , k.1,

which is minimal only for fixed points of periodk. To stabi-
lize a fixed point of period 3 we applied the rewardr n11
51 if dk(xn),0.02 andr n11520.5 otherwise. This choice
of reward rewards a stabilization of any period 3 fixed poi
Since the rotor has several of these, if a particular perio
orbit is desired, we must give positive rewards only if t
desired orbit was stabilized. We successfully used this
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proach to stabilize the period 3 fixed point in the neighb
hood of x2p but needed a set of reference vectors of s
uWu5200.

The other control goal we investigated is related to
problem of maintenance of chaos@38#. The goal here is to
prevent the system from a transition of the chaotic state
a stable attracting state. For the rotor a ‘‘maintenance’’ of
chaotic state means that the system should be kept from
tering the neighborhoods of the stable period 1 or perio
fixed points. This could certainly be done by adding lar
noise to the system. Instead, here we will demonstrate
the proposed algorithm is able to ‘‘maintain’’ chaos in th
rotor through small perturbations to the external forcing b
suitable formulation of the reward function. We chose t
reward functionr n1151 if d1.2.5 andd3.5 and r n115
20.5 otherwise. This punishes all actions leading to sta
close to period 1 or 3 fixed points. We approximated a ma
tenance control policyQmtn* off-line. The noise was set to
d50.02, the control set wasU5$0,0.2,20.2%, and we used
the setW of size uWu5100 mentioned above. Figure 16~a!
shows the negative probability densityp(v,u) in the rect-
angle @25p,5p#3@0,2p#. We see that the regions in th
neighborhoods of the attracting states have negligible pr
ability of being visited.

VI. CONCLUSIONS

In this paper we have demonstrated the control o
‘‘simple’’ complex system, the kicked mechanical rotor, u

FIG. 16. Negative probability density2p(v,u) in the rectangle
@25p,5p#3@0,2p#. It is d50.02 andU5$0,0.2,20.2% with per-
turbations tof 0 chosen fromU according to the policyQmtn* . The
black areas belong to densities withp,231025.
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LEARNING TO CONTROL A COMPLEX MULTISTABLE SYSTEM PHYSICAL REVIEW E63 036217
der the influence of noise. Our control method is based
reinforcement learning and establishes an optimal con
policy in terms of an optimal state-action value function d
pending on discretized states and control actions. The
proximated control policy acts globally and establishes s
bilization of a desired state quickly from any initial conditio
even under the influence of large noise. It is interesting
note that control could be established even in regions
which the system’s dynamics are characterized as stocha
The presented approach neither assumes knowledge no
quires estimation of an analytical description of the syst
dynamics. All information required to find an optimal polic
is obtained through interaction with the environment. T
does, however, not mean that we suggest not to use info
tion about the system when this is available. Reinforcem
learning is flexible and allows to include additional co
straints in the algorithm, as we did when selecting spec
fixed points or period 3 orbits.

In certain applications, such as medical applications
might be impossible to interact with the system to be c
trolled. If a good model is available then the policy can
established through an interaction with the model dynam
If no model is available then it is necessary to comb
model approximation techniques with reinforcement lea
ing, i.e. a model of the system is approximated together w
the control policy@26#. Of particular interest for future re
search is the combination of vector quantization and mo
approximation techniques as suggested in@33,36# with the
approximation of the control policy.

The method requires a discrete state representation, w
was computed in advance from sample data with the neu
gas algorithm. Many different vector quantization techniqu
exist in the literature and can be used instead. The ques
of how to obtain an optimal discrete representation must
be investigated. Future research will attempt to combine
approximation of the finite representation with the poli
approximation that can lead to representations suited for
particular control problem. Furthermore, the application
systems with a reconstructed phase space, such as a sp
ys

m

v
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embedding vectors@39#, must be investigated to make th
approach more suitable for realistic applications.

The presented approach has not yet been applied to
tems with riddled basins or more complexly structured ph
spaces, which often occur in applications, and it has to
investigated how to deal with systems evolving in
infinite-dimensional phase space. A combination with a
mension reduction technique such as a Karhunen-Loeve
composition might allow us to reduce the system to a fin
dimensional system in certain situations. Furthermore,
control of more complicated dynamics such as quasiperio
orbits ~invariant circles! or chaotic saddles still has to b
investigated. Our results on ‘‘maintenance of chaos’’ prov
a first step in this direction.

Current research in the reinforcement learning literatur
focusing on the development of algorithms suitable in co
tinuous phase and action spaces and on the applicatio
reinforcement learning to high-dimensional systems. S
cesses in the field of reinforcement learning could be app
to the control of complex systems. On the other hand,
control of complex systems provides an interesting set
problems for the testing of new reinforcement learning co
trol algorithms.

Our results in this paper suggest that the proposed me
might lead to a variety of interesting applications in the fie
of complex dynamical systems. In particular, the combin
tion with other existing methods could lead to more flexib
and versatile control techniques. Possible implications
neural information processing have to be investigated
will be a topic of future research. One of the goals here w
be the development of an information processing or patt
retrieval device, which is based on the principle of our co
trol strategy.
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